24/7 Space News
STELLAR CHEMISTRY
In search of the invisible galaxy
Image of the lensed galaxy acquired with the ALMA interferometer
ADVERTISEMENT
     
In search of the invisible galaxy
by Staff Writers
Trieste, Italy (SPX) Feb 08, 2023

A mysterious and very distant object, in a universe as it was 'just' two billion years after the Big Bang, that hides from even the most advanced instruments. Its features have finally been described by a team from SISSA in a recently published study reported in The Astrophysical Journal.

An extremely remote celestial body in a still young Universe, one sixth the size of the present one. An object so dark that it is almost invisible, even to highly sophisticated instruments. Its nature has long been the subject of debate, but by means of surveys made with the ALMA interferometer, the SISSA research group led by Prof. Andrea Lapi that conducts research into the formation and evolution of galaxies has finally succeeded in identifying its main properties.

Compact, and containing large quantities of interstellar dust, it is a young galaxy, forming stars at about 1000 times the rate of the Milky Way. The description of this galaxy will be useful for revealing more about this very distant object and indicating new approaches for the study of other 'dark' celestial bodies. The research just published in The Astrophysical Journal will also provide new insights for developing advanced models of galaxy formation and evolution.

Remote, dark and invaluable: the most distant galaxies
"Very distant galaxies are real mines of information about the past and future evolution of our Universe," explains the first author Marika Giulietti, who studies Astrophysics and Cosmology at SISSA.

"However, studying them is very challenging. They are very compact and therefore difficult to observe. Also, because of distance, we receive very weak light from them. The cause of this obscuration is the massive presence of interstellar dust, which intercepts visible light from young stars, and makes it difficult to detect with optical instruments, and re-emits it at greater wavelengths where it can be observed only with powerful interferometers in the (sub-)millimetre and radio wavebands".

These dark bodies are not particularly rare: "In recent years" explains Giulietti "several distant galaxies have been discovered that are particularly obscured, appearing completely invisible even to the most powerful optical instruments, such as the Hubble Space Telescope".

Gravitational lensing
A tool used in these cases is the so-called gravitational lensing, a solution of great scientific potential. The principle is simple: general relativity means that space objects closer to us that have a great mass distort light coming from more distant sources that are perfectly aligned with them.

Giulietti continues: "In this way, large celestial bodies act as a kind of enormous cosmic lens that makes the 'background' galaxies appear larger and brighter, allowing them to be identified and studied". Over the past decade many observation programmes have been carried out with this approach. "About a hundred have been discovered so far, but there could be many more."

A truly special object
It was in one of these investigations, says Giulietti, that the main object of this current study was identified: "This was a very special celestial body. It is very bright and potentially subject to lensing, but this occurs only at certain precise wavelengths, probably due to the presence of large quantities of interstellar dust. Studying it is consequently very complex. Observations made with ALMA, a very modern sub-millimetre interferometer located in the Atacama desert of Chile, enabled us to determine its features.

"We studied this peculiar object by adopting particular codes that enabled us to reconstruct the original shape of the background source and also to understand certain properties of the lens itself. The observations also provided valuable information about the gas content of this source, and we were able to determine how it is distributed. Our analysis showed that this object is very compact, presumably young, and forming stars at an extremely high rate. In the future, the James Webb Space Telescope will reveal much more about this galaxy, something that only it can do at the moment."

Prof. Lapi, co-author of the research, concludes by stressing the importance of this study: "Distant galaxies that are young, compact, characterised by vigorous star formation, and largely obscured by dust, and that possess a very rich reservoir of molecular gas, are forerunners of the massive quiescent galaxies that we see in the local Universe, and therefore provide very valuable insights into the processes leading to the formation and evolution of these structures during the history of the Cosmos".

"I would like to emphasise" continues the professor "that the success of this research was achieved through synergy between the SISSA Astrophysics and Cosmology group and the ALMA Regional Centre based at the INAF - Institute of Radio Astronomy in Bologna (in particular through collaboration with Dr. Marcella Massardi, co-author of the study), which allowed our students to access, and learn how to use effectively, the ALMA data archive, a real gold mine for astrophysics research today".

Research Report:ALMA Resolves the First Strongly Lensed Optical/Near-IR-dark Galaxy

Related Links
International School for Advanced Studies
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
Study reveals complex chemistry inside 'stellar nurseries'
Boulder CO (SPX) Feb 07, 2023
An international team of researchers has uncovered what might be a critical step in the chemical evolution of molecules in cosmic "stellar nurseries." In these vast clouds of cold gas and dust in space, trillions of molecules swirl together over millions of years. The collapse of these interstellar clouds eventually gives rise to young stars and planets. Like human bodies, stellar nurseries contain a lot of organic molecules, which are made up mostly of carbon and hydrogen atoms. The group's resul ... read more

ADVERTISEMENT
ADVERTISEMENT
STELLAR CHEMISTRY
NASA's Aerospace Safety Advisory Panel releases 2022 Annual Report

Russia launches resupply ship to int'l space station

Bringing more power to Space Station

Design a spacesuit for ESA

STELLAR CHEMISTRY
Launches of Busek Thrusters push OneWeb constellation towards completion

Poland's SatRev signs on for future Virgin Orbit flights

SpaceX test fires Starship Super Heavy Booster's 31 Engines

NASA conducts first 2023 test of redesigned SLS rocket engine

STELLAR CHEMISTRY
Mars rover finds rippled rocks caused by waves: NASA

Searching for a Drill Site Near Encanto: Sols 3735-3736

Enchanting Encanto Calls: Sols 3732-3734

NASA's ESCAPADE mission headed to Mars in 2024 on Blue Origin's New Glenn

STELLAR CHEMISTRY
Shenzhou XV astronauts take their first spacewalk

Shenzhou XV astronauts to conduct first spacewalk

China's Deep Space Exploration Lab eyes top global talents

Chinese astronauts send Spring Festival greetings from space station

STELLAR CHEMISTRY
MDA secures new contract to supply Ka-band multibeam antennas for Argentina's ARSAT-SG1 Satellite

AST SpaceMobile announces collaboration with Zain KSA

Space Daily retools to AI/ML centric Content Management System

AST SpaceMobile announces collaboration with TIM

STELLAR CHEMISTRY
AWE completes space environment tests

Momentus Vigoride-5 Status Update #2

International group of scientists warns nuclear radiation has devastating impacts on ecosystems

Automating the math for decision-making under uncertainty

STELLAR CHEMISTRY
Researchers focus AI on finding exoplanets

A nearby potentially habitable Earth-mass exoplanet

Two nearby exoplanets might be habitable

Will machine learning help us find extraterrestrial life

STELLAR CHEMISTRY
SwRI models explain canyons on Pluto moon

A new ring system discovered in our Solar System

JUICE's final take-off before lift-off

NASA's Juno Team assessing camera after 48th flyby of Jupiter

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.